Abstract

Interaction of intense laser fields with atoms distorts the bound-state electron cloud. Tracing the temporal response of the electron cloud to the laser field is of fundamental importance for understanding the ultrafast dynamics of various nonlinear phenomena of matter, but it is particularly challenging. Here, we show that the ultrafast response of the atomic electron cloud to the intense high-frequency laser pulses can be probed with the attosecond time-resolved photoelectron holography. In this method, an infrared laser pulse is employed to trigger tunneling ionization of the deforming atom. The shape of the deforming electron cloud is encoded in the hologram of the photoelectron momentum distribution. As a demonstration, by solving the time-dependent Schrödinger equation, we show that the adiabatic deforming of the bound-state electron cloud, as well as the nonadiabatic transition among the distorted states, is successfully tracked with attosecond resolution. Our work films the formation process of the metastable Kramers-Henneberger states in the intense high-frequency laser pulses. This establishes a novel approach for time-resolved imaging of the ultrafast bound-state electron processes in intense laser fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.