Abstract
The poisoning of catalysts has always been a vital issue in catalytic reactions. In this study, direct observation of the interaction of CO and oxygen-poisoned Co(0001) has been achieved with scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), and density functional theory calculation. A two-stage adsorption process of CO on a well-prepared p(2×2)-O layer covered Co(0001) was directly visualized. With increasing annealing time at a certain temperature after the CO dosage, the ordered (2 × 2) pattern formed in the first stage can be recovered, suggesting the weak interaction of CO with the O-covered Co(0001) surface in the latter stage. Compared to the clean Co(0001) surface, on an oxygen-poisoned surface, no further reaction was observed, illustrating the poisoning of the catalyst. Moreover, TPD results are in good agreement with the STM observation; a desorption energy of 0.35 eV is evaluated with a simple but accurate scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.