Abstract

We firstly report an experimental visualization of a cycloaddition reaction on RT frozen asymmetric Si dimers. The frozen Si dimers with a local c(4 × 2) order were prepared by pinning flip-flopping Si dimers by using molecules. This RT pristine c(4 × 2) structure was used to determine what Si atom of an asymmetric Si dimer bonds to a molecule at the initial stage of the RT cycloaddition reaction, which has been a long-standing puzzling issue. This made it possible to compare directly experimental cycloaddition reactions with theoretical ones. As a prototype for the experiment, a 1,3-butadiene molecule adsorbed between Si dimer rows was used. The 1,3-butadiene molecule was found to prefer a symmetric Si pair on the frozen Si dimers, i.e., two electrophilic lower atoms of asymmetric Si dimers. This result is consistent with the theoretical prediction that a 1,3-diene molecule prefers a symmetric Si pair on the Si(001)c(4 × 2) surface. This experimental approach can also be applied to other studies for the adsorption of a molecule on a Si(001) surface at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.