Abstract
Analysis of cellular ultrastructure dynamics and metal ions' fate can provide insights into the interaction between living organisms and metal ions. Here, we directly visualize the distribution of biogenic metallic aggregates, ion-induced subcellular reorganization, and the corresponding regulation effect in yeast by the near-native 3D imaging approach, cryo-soft X-ray tomography (cryo-SXT). By comparative 3D morphometric assessment, we observe the gold ions disrupting cellular organelle homeostasis, resulting in noticeable distortion and folding of vacuoles, apparent fragmentation of mitochondria, extreme swelling of lipid droplets, and formation of vesicles. The reconstructed 3D architecture of treated yeast demonstrates ∼65% of Au-rich sites in the periplasm, a comprehensive quantitative assessment unobtained by TEM. We also observe some AuNPs in rarely identified subcellular sites, namely, mitochondria and vesicles. Interestingly, the amount of gold deposition is positively correlated with the volume of lipid droplets. Shifting the external starting pH to near-neutral results in the reversion of changes in organelle architectures, boosting the amount of biogenic Au nanoparticles, and increasing cell viability. This study provides a strategy to analyze the metal ions-living organism interaction from subcellular architecture and spatial localization perspectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.