Abstract

Leukocyte infiltration in atherosclerosis has been extensively investigated by using histological techniques on fixed tissues. In this study, intravital microscopic observations of leukocyte recruitment in the aorta of atherosclerotic mice were performed. Interactions between leukocytes and atherosclerotic endothelium were highly transient, thereby limiting the ability for rolling leukocytes to firmly adhere. Leukocyte rolling was abolished by function inhibition of P-selectin (P<0.001, n=8), whereas antibody blockage of E-selectin (n=10) decreased rolling leukocyte flux to 51 +/- 9.9% (mean+/-SE, P<0.01) and increased leukocyte rolling velocity to 162 +/- 18% (P<0.01) of pretreatment values. Notably, function inhibition of the integrin alpha(4) subunit (n=5) had no effect on rolling flux (107+/-25%, P=0.782) or rolling velocity (89+/-6.1%, P=0.147), despite endothelial expression of vascular cell adhesion molecule 1 (VCAM-1). Leukocytes interacting with atherosclerotic endothelium were predominantly neutrophils, because treatment with antineutrophil serum decreased rolling and neutrophil counts in peripheral blood to the same extent. In conclusion, we present the first direct observations of atherosclerosis in vivo. We show that transient dynamics of leukocyte-endothelium interactions are important regulators of arterial leukocyte recruitment and that leukocyte rolling in atherosclerosis is critically dependent on the endothelial selectins. This experimental technique and the data presented introduce a novel perspective for the study of pathophysiological events involved in large-vessel disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call