Abstract

If deconfined quark matter exists inside compact stars, the primary cooling mechanism is neutrino radiation via the direct Urca processes d->u+e+antinu_e and u+e->d+nu_e. Below a critical temperature, T_c, quark matter forms a colour superconductor, one possible manifestation of which is a condensate of <ud> quark Cooper pairs in an electric-charge neutralising background of electrons. We compute the neutrino emission rate from such a phase, including charged pair-breaking and recombination effects, and find that on a material temperature domain below T_c the pairing-induced suppression of the neutrino emission rate is not uniformly exponential. If gapless modes are present in the condensed phase, the emissivity at low temperatures is moderately enhanced above that of completely unpaired matter. The importance of charged current pair-breaking processes for neutrino emission both in the fully gapped and partially gapped regimes is emphasised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.