Abstract

This letter investigates the direct trajectory optimization of the free-floating space manipulator (FFSM). The main purpose is to plan the joint space trajectories to reduce the spacecraft motion due to the joint rotation during the FFSM performing tasks. To improve the calculation efficiency, the adaptive Radau pseudospectral method (A-RPM) is applied to discretize the system dynamics and transform the formulated optimal problem into a nonlinear programming problem (NLP). By adaptively subdividing the current segment and assigning collocation points according to the solution error, high-degree interpolation polynomials are avoided. To verify the effectiveness of the proposed method, a ground micro-gravity platform of the FFSM system is designed by using the air-bearing technique, on which experiments are carried out. The results show that the variation of the base spacecraft is dramatically reduced if the joints rotate along the optimized trajectories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call