Abstract

Purpose The purpose of this paper is to address the large stator flux linkage ripple and electromagnetic torque ripple caused by the hysteresis comparator in traditional direct torque control for a bearingless induction motor (BIM). Design/methodology/approach Model predictive direct torque control (MPDTC) strategy is adopted. On the basis of the mathematical model of BIM, the stator current and stator flux observational values are obtained, and the electromagnetic torque and stator flux at the next moment are predicted. Then, based on the relationship between the stator flux and the electromagnetic torque, the predicted stator flux can be transformed into an equivalent flux linkage vector, which eliminates the weighting coefficients problem among multiple variables in traditional objective functions. The objective function and torque PI controller will output the optimal stator flux linkage and the increments of the torque phase angle. Through the phase angle increments, the space voltage vector can be obtained by the reference flux linkage controller instead of the stator flux linkage and the torque hysteresis controller. Findings The proposed MPDTC method can effectively improve the stator flux linkage and the torque ripple. It can implement the stable suspension of the rotor and improve the dynamic performance and steady-state accuracy of the BIM system. Originality/value A MPDTC strategy is proposed to reduce the ripple of stator flux and electromagnetic torque. The phase angle increment angle of stator flux linkage and electromagnetic torque is optimized by model prediction, and the optimal space voltage vector is obtained by designing the reference flux controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call