Abstract

MoS2 has drawn great attention as a promising alternative to Pt-based catalysts for the hydrogen evolution reaction (HER). However, it suffers from sluggish kinetics to drive the HER process because of inert basal planes. Here, an on-chip MoS2 monolayer (MoS2 ML) HER reactor was designed and fabricated to reveal direct thermal enhancement of MoS2 ML for the HER. The thermal effects generated efficient electron transfer in the atomic MoS2 ML and at the interface between the electrolyte and the catalyst, leading to enhanced HER activity. The MoS2 ML measured at a higher temperature (60 °C) possesses a significantly enhanced HER activity with a lower overpotential (90 mV at current densities of 10 mA cm-2), lower Tafel slope (94 mV dec-1), and higher turnover frequency (73 s-1 at an overpotential of 125 mV) compared to the results obtained at room temperature. More importantly, the findings are attractive toward understanding the thermal effect on 2D monolayers as well as the development of next-generation electrocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call