Abstract

Chemical proteomics is widely used for the global investigation of protein activity and binding of small molecule ligands. Covalent probe binding and inhibition are assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to gain molecular information on targeted proteins and probe-modified sites. The identification of amino acid sites modified by large complex probes, however, is particularly challenging because of the increased size, hydrophobicity, and charge state of peptides derived from modified proteins. These studies are important for direct evaluation of proteome-wide selectivity of inhibitor scaffolds used to develop targeted covalent inhibitors. Here, we disclose reverse-phase chromatography and MS dissociation conditions tailored for binding site identification using a clickable covalent kinase inhibitor containing a sulfonyl-triazole reactive group (KY-26). We applied this LC-MS/MS strategy to identify tyrosine and lysine sites modified by KY-26 in functional sites of kinases and other ATP-/NAD-binding proteins (>65 in total) in live cells. Our studies revealed key bioanalytical conditions to guide future chemical proteomic workflows for direct target site identification of complex irreversible probes and inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.