Abstract

The traditional preparation of carbon materials requires specific polymer precursors and complex procedures. In this work, a series of easily prepared protic ionic liquids and salts (PILs/PSs) based on widely obtainable N-containing bases and acids were synthesized and explored as novel small-molecule precursors for preparing carbon materials via direct carbonization. Protonation enables nearly all N-containing compounds to be directly carbonized to carbon materials without the additional catalyst, tedious synthesis, vacuum system, and etching step that are often involved with conventional precursors. The correlations between the organic precursors and the properties of the carbon materials, in terms of yield, graphitization, N content, thermal stability against oxidation, and porosity, were systematically investigated. Based on the molecular tunability of PILs/PSs, it was possible to obtain task-specific carbon materials through ab initio design of the precursors at the molecular level. Importantly, high...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.