Abstract

Palladium-containing insoluble heteropolyacid (HPA) catalysts (Pd0.15M2.5H0.2PW12O40) were prepared by an ion-exchange method using various alkaline metal ions (M = K+, Rb+, and Cs+) (denoted as Pd-KPW, Pd-RbPW, and Pd-CsPW). They were then applied to the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Conversion of hydrogen over the catalysts was almost identical with no great difference, while selectivity for hydrogen peroxide increased in the order of Pd-KPW < Pd-RbPW < Pd-CsPW. As a consequence, yield for hydrogen peroxide increased in the order of Pd-KPW < Pd-RbPW < Pd-CsPW. It was found that yield for hydrogen peroxide increased with increasing Pd 3d5/2 binding energy of the catalyst. Among the catalysts tested, Pd-CsPW catalyst with the highest Pd 3d5/2 binding energy showed the highest yield for hydrogen peroxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.