Abstract

Work function engineering, a precise tuning of the work function, is essential to achieve devices with the best performance. In this study, we demonstrate a simple technique to deposit graphene on insulators with in situ controlled boron doping to tune the work function. At a temperature higher than 1000 °C, the boron atoms substitute carbon sites in the graphene lattice with neighboring carbon atoms, leading to the graphene with a p-type doping behavior. Interestingly, the involvement of boron vapor into the system can effectively accelerate the reaction between nickel vapor and methane, achieving a fast graphene deposition. The changes in surface potential and work function at different doping levels were verified by Kelvin probe force microscopy, for which the work function at different doping levels was shifted between 20 and 180 meV. Finally, the transport mechanism followed by the Mott variable-range hopping model was found due to the strong disorder nature of the system with localized charge-carrie...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call