Abstract

A series of Al-SBA-15 with controllable aluminosilicate plug structures inside straight mesopores has been hydrothermally synthesized in a one-step synthesis in an environmentally friendly acid-free medium, using triblock copolymer Pluronic P123 as a structure-directing agent, water as solvent, tetraethyl orthosilicate (TEOS) and aluminum nitrate (Al(NO)(3)center dot 9H(2)O) as silica and aluminum sources, respectively. The effects of the P123/Si molar ratio in the initial solution and aging temperature on the structural properties of the resulting materials were investigated by powder X-ray diffraction (XRD), nitrogen adsorption-desorption at 77 K, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric (TG), FT-IR spectra and inductively coupled plasma (ICP) analyses. The nature of the Al species and the acidity of the resultant samples were studied by solid state Al-27 MAS NMR and pyridine adsorption measurements. The specific surface area (935-755 m(2)g(-1)), pore volume (1.03-0.56 cm(3)g(-1)) and especially the concentration and distribution of type mesopores (0-68% to the total pores) of the synthesized Al-SBA-15 can be controlled by a simple adjustment of the P123/Si molar ratio in the initial solution. Moreover, increasing the aging temperature higher than 363 K can remarkably decrease the formation of plug structures to obtain open form mesopores. The observation by TEM of alternate defined gray and white areas inside the mesopores gives the strong evidence of isolated microporous aluminosilicate plugs inside the channels. In addition, a moderate hydrothermal post-treatment can finely modify the mesostructures through the partial or complete dissolution of the aluminosilicate plugs. (C) 2013 Elsevier Inc. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call