Abstract

While bottom-up syntheses of ordered nanostructured materials at colloidal length scales have been successful at producing close-packed materials, it is more challenging to synthesize non-close-packed (ncp) structures. Here, a metal oxide nanostructure with ncp hollow sphere arrays was synthesized by combining a polymeric colloidal crystal template (CCT) with a Pechini precursor. The CCT provided defined confinement through its tetrahedral (Td ) and octahedral (Oh ) voids where the three-dimensionally (3D) ordered, ncp hollow sphere arrays formed as a result of a crystallization-induced rearrangement. This nanostructure, consisting of alternating, interconnected large and small hollow spheres, is distinct from the inverse opal structures typically generated from these CCTs. The morphology of the ncp hollow sphere arrays was retained in pseudomorphic transformations involving sulfidation and reoxidation cycling despite the segregation of zinc during these steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.