Abstract
AbstractThermal conductivity and electrical resistivity of 1 μm long aluminum nanowires, 75, 100, and 150nm in width and 100nm thick, were measured at room temperature. The method consists of microfabricated electrothermal test devices and a model-based data processing approach using finite-element analysis (FEA). The electrical and thermal properties of the nanowires differ significantly from bulk values while electrical resistivity agrees well with theoretical prediction. Electron transport equation models, which adequately describe the resistivity data, consistently underestimate the thermal conductivity. Incorporating a phonon contribution of ˜ 21 W/m·K to the total thermal conductivity is found to accurately describe the measured values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.