Abstract

The ability of glutamate and other excitatory amino acids to stimulate prolactin secretion when administered to adult animals is hypothesized to depend on a central site of action in the brain, but there are no data to support this position. An alternative hypothesis was tested that glutamate would stimulate prolactin release when applied directly to primary cultures of dispersed adult female rat anterior pituitary cells studied in a perifusion protocol. Glutamate increased the rate of prolactin release within two minutes in a self-limited manner. Glutamate-stimulated prolactin release was augmented about 4-fold by elimination of magnesium from the perifusate and was associated with stimulation of pituitary calcium flux. Ketamine and MK-801 both reduced the basal rate of prolactin release and abolished the effects of glutamate. Pituitary cells of 10-day-old rats responded similarly to glutamate. Exposure to glutamate did not influence subsequent responses to physiological hypothalamic secretagogues, thus the likelihood of toxicity was minimized. These results suggest that the N-methyl-D-aspartate (NMDA) subclass of the glutamate receptor complex is involved. Prolactin secretion may be regulated physiologically through a functional glutamate receptor on pituitary cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call