Abstract

AbstractBoth stereolithographic printing of microfluidics and inkjet printing of electronics are promising tools for the fabrication of lab‐on‐a‐chip devices. However, the combination of these two technologies has been a challenge so far, as the 3D‐printed components usually have to be bonded manually to the substrates functionalized with printed electronics. Here, a surface modification method is demonstrated for enabling the direct stereolithographic printing of microfluidic structures onto a variety of different substrates that are usually employed for printed electronics. The approach makes use of an acrylate‐terminated silane that covalently binds substrate and polymer network of the 3D print. The bonding strength is quantified and the compatibility of the concept with printed electrodes in a microfluidic channel is evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.