Abstract

A direct spectrum matching method for laser-induced breakdown spectroscopy is proposed to simultaneously measure gas density and concentration in turbulent reacting environments with improved measurement accuracy. The breakdown spectrum recorded in the target flow is directly matched with a spectrum out of a database consisting of various emission spectra recorded under well-defined conditions in a range of gas density and composition. It is shown that the wavelength, intensity and line width of the atom/ion emission lines in the spectrum indicate atom composition and gas density that are independent of parent molecular species in the target flow. Once a matching spectrum (within 550–830 nm containing O, H, N, and C lines) in the database of a known gas condition is found, the concentration and gas density at the location of the breakdown can be accurately derived. A 532-nm Nd:YAG laser with 10-Hz pulse repetition rate is used to induce breakdown in fuel/air mixtures in a variable pressure combustion chamber to build the spectrum database.In addition, it is used in a cavity flameholder of a model supersonic combustor to measure the gas density and concentration fields in a turbulent reacting environment. All the measurements are completed within 100 ns after laser firing, before breakdown affects the flow and the fast evolving environment alters the breakdown spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.