Abstract
Interactions of plasma jets with solid surfaces are extensively studied in context with development of future fusion devices. In experiments carried out on the iodine laser system PALS, the energetic ions were produced at double-foil Al/Mg targets irradiated by one or two counter-propagating laser beams. The plasma jets from the rear surface of the laser-exploded Al foil streamed towards the Mg target representing the wall preheated by the action of the high-energy photons, particle and/or laser beams. Instead of being trapped by the cold secondary-target material, the forward-accelerated Al ions collided with the counter-propagating matter ejected from the wall. The environmental conditions in near-wall plasmas were analyzed with the high-resolution x-ray spectroscopy and temporally-resolved x-ray imaging. The deceleration of the incident Al ions in the near-wall region was directly observed and quantitatively characterized via Doppler shifts of the J-satellite from the Al Lya spectral group. The interaction scenario was modelled using the 2D arbitrary Lagrangian Eulerian hydrocode PALE and the multifluid code MULTIF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.