Abstract
Spark ablation has been combined to microwave plasma torch atomic emission spectrometry for the direct analysis of compact metallic samples. The material is ablated by a medium voltage spark (450 V, 370 Hz) in a point-to-plane configuration and swept into a 100-W, 2.45-GHz argon microwave discharge. The microwave plasma is observed end-on and the radiation analysed with a polychromator. The detection limits for Fe, Ni, Pb and Sn in brass, Cr, Cu, Ni, Mn, Mo, Si and V in steel and Cu, Fe, Mg, Mn, Si and Zn in aluminium with the microwave plasma torch in the case of measurements with a polychromator are in the μg/g range and by a factor of up to 20 higher than those obtained with spark ablation coupled to inductively coupled plasma atomic emission spectrometry using a high resolution sequential spectrometer. The stability of the emission signal depends on the element studied and relative standard deviations usually are between 0.5 and 3.5%. In the case of low-alloy steels, the linearity and the precision of the calibration could be improved by internal standardisation. Several elements (Cr, Cu, Ni, Si and V) could be determined in a steel sample (BAS SS 410/1) with high accuracy and precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.