Abstract

A thorough investigation on the performance of broadband direct irradiance predictions using solar radiation models is detailed here. Nineteen models were selected from an extensive literature survey. In addition, two new models were specifically developed for this study to provide state-of-the-art modelling of the broadband transmittances associated with the most important extinction processes in the atmosphere. The SMARTS spectral radiative code has been selected to provide 2064 reference transmittance and irradiance values, corresponding to as many combinations of solar position and varied atmospheric conditions. Inconsistencies or errors in the modelling of different transmittance functions from existing models were found, and could be corrected in some cases. As a result of this theoretical assessment, it is concluded that detailed transmittance models normally perform better than bulk models, and that models using Linke’s turbidity coefficient in intermediate calculations performed poorly. Four high-performance models can be recommended as a result of this detailed investigation: CPCR2, MLWT2, REST and Yang (in alphabetical order). The new MLWT2 model provides the best performance in all tests, thanks to its elaborate multi-layer spectral weighting scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.