Abstract

In this study, we investigate the sintering behavior and mechanisms of metal-organic frameworks/coordination polymers (CPs) through physical and microstructural characterization of [Zn(HPO4)(H2PO4)2]·2H2Im (ZPI; a melting CP, Im = imidazole) and ZIF-8 (a non-melting CP). By performing simple compaction and subsequent sintering, a bulk body of CPs was obtained without losing the macroscopic crystallinity. The sintering behavior was found to be dependent on the temperature, heating rate, and physical properties of the CPs and, in particular, their meltability. During sintering, shrinkage occurred in both the CPs, but the observed shrinkage rate of the ZPI was in the 10-20% range, whereas that of the ZIF-8 was less than 1%. Additionally, the sintering mechanisms of the ZPI and ZIF-8 varied between low and high temperatures, and in the case of ZPI, localized melting between the primary particles was the dominant mechanism on the high-temperature side. However, substantial shrinkage did not correspond to an increase in density; on the contrary, a decrease in the apparent density of ZPI was observed as the sintering temperature was increased. The sintering technique is well established and commercially available; thus, the results obtained in this study can be utilized for optimizing the manufacturing conditions of melting CPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.