Abstract
We study aggregation in turbulent flow by means of particle-resolved, direct numerical simulations. Mono-sized spheres with an attractive square-well potential are released in homogeneous, isotropic turbulence generated through linear forcing. Typical cases have a solids volume fraction of 0.08 and a ratio of the Kolmogorov scale over the primary sphere radius of O(0.1). The latter implies that the flow around the primary spheres is inhomogeneous. The simulations show the continuous formation and breakage of aggregates as a result of the turbulence and the attractive potential. The average size of the aggregates is a pronounced function of the strengths of turbulence and interaction potential. Fractal dimensions of the aggregates are in the range 1.4–1.8 for the cases studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.