Abstract

The use of gas expansions to generate atomic or molecular beams has become a standard technique in nuclear and hadron physics for the production of polarized ion beams and gas targets. A direct simulation Monte Carlo method was used to understand the processes occurring in an expansion of highly dissociated hydrogen or deuterium gas at low densities. The results were verified in several measurements including time-of-flight and beam-profile determinations which showed that the supersonic gas expansions can properly be described by the Monte Carlo calculations. Additionally a new method of beam formation, the hollow carrier jet, was tested under the conditions of the atomic beam source operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.