Abstract

Quantum effects on the translational nonequilibrium at low temperatures in a spherical expansion of 4He from room temperature are studied using the direct simulation Monte Carlo method to make a comparison with the experimental measurements along the axis of a helium free jet expansion. The quantum-mechanical scattering cross sections are obtained by a quantum phase-shift calculation for the Lennard-Jones and more elaborate Hartree–Fock dispersion potentials. It is shown that the parallel and perpendicular kinetic temperatures are higher and lower, respectively, for the quantum-mechanical scattering than for the classical-mechanical scattering. A comparison with the parallel temperature determined by fitting the ellipsoidal velocity distribution function to the measured spectral profiles indicates that the parallel kinetic temperature for the quantum-mechanical scattering is higher than the measured temperature, with which the parallel kinetic temperature for the classical-mechanical scattering is fortuitously in better agreement. Because both the parallel and perpendicular velocity distribution functions appreciably deviate from Maxwellians and the Maxwellian (half-width) fit temperatures are lower than the kinetic temperatures, the discrepancy between the quantum-mechanical and measured parallel temperatures may partly be resolved by the difference between the kinetic and fitting temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call