Abstract

The Direct Simulation Monte Carlo (DSMC) model is presented for three-dimensional single scattering of natural light by suspended, randomly oriented, optically homogeneous and isotropic, rounded and stochastically rough cubic particles. The modelled particles have large size parameter that allows geometric optics approximation to be used. The proposed computational model is simple and flexible. It is tested by comparison with known geometric optics solution for a perfect cube and Lorenz–Mie solution for a sphere, as extreme cases of the class of rounded cubes. Scattering and polarization properties of particles with various geometrical and optical characteristics are examined. The experimental study of real NaCl crystals with new Progra 2 instrument in microgravity conditions is conducted. The experimental and computed polarization and brightness phase curves are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.