Abstract

The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. Consistent with previous work in this field, the DSMC simulations indicate that RMI growth follows a universal behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call