Abstract

We present Walsh-quadrature phase-shift keying (Walsh-QPSK) pseudonoise (PN) modulation schemes for both coherent and noncoherent direct-sequence code-division multiple-access (DS-CDMA) systems, wherein the PN spreading sequences for in-phase and quadrature data in a conventional QPSK PN modulation scheme are coded by Walsh sequences indexed by a special rule to reduce the envelope variation of the transmitted signal. The signal characteristics of the two schemes are analyzed when a rectangular-shaped PN chip pulse is used, and it is shown that the proposed coherent DS-CDMA system has a constant envelope even in the presence of a transmitted phase reference. We simulate the signals to obtain the envelope variations when a spectrally efficient shaped PN chip pulse is used, and compare the results with those of conventional QPSK and orthogonal QPSK (OQPSK) PN modulation schemes. The results show that both the noncoherent and coherent Walsh-QPSK schemes have smaller envelope variations than the conventional noncoherent QPSK and OQPSK PN modulation schemes, even though in the coherent Walsh-QPSK scheme the pilot channel is added to the signal channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.