Abstract

Direct selective laser sintering (SLS) technology can be used to produce 3D hard metal functional parts from commercial available powders. Unlike conventional sintering, it does not require dedicated tools, such as dies. Hence, total production time and cost can be reduced. The large shape freedom offered by such a process makes the use of, for example, sintered carbides components viable in domains where they were not applied before. Successful results have been obtained in the production of sintered carbide or hard metal parts through SLS. The investigation focuses on tungsten carbide-cobalt (WC-Co) powder mixture. This material is characterised by its high mechanical properties and its high wear resistance and is widely used in the field of cutting tools. This paper is devoted to the experimental study and the simulation of direct selective laser sintering of WC-Co hard metal powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.