Abstract

BackgroundCOVID-19 is a pandemic respiratory and vascular disease caused by SARS-CoV-2 virus. There is a growing number of sensory deficits associated with COVID-19 and molecular mechanisms underlying these deficits are incompletely understood.MethodsWe report a series of ten COVID-19 patients with audiovestibular symptoms such as hearing loss, vestibular dysfunction and tinnitus. To investigate the causal relationship between SARS-CoV-2 and audiovestibular dysfunction, we examine human inner ear tissue, human inner ear in vitro cellular models, and mouse inner ear tissue.ResultsWe demonstrate that adult human inner ear tissue co-expresses the angiotensin-converting enzyme 2 (ACE2) receptor for SARS-CoV-2 virus, and the transmembrane protease serine 2 (TMPRSS2) and FURIN cofactors required for virus entry. Furthermore, hair cells and Schwann cells in explanted human vestibular tissue can be infected by SARS-CoV-2, as demonstrated by confocal microscopy. We establish three human induced pluripotent stem cell (hiPSC)-derived in vitro models of the inner ear for infection: two-dimensional otic prosensory cells (OPCs) and Schwann cell precursors (SCPs), and three-dimensional inner ear organoids. Both OPCs and SCPs express ACE2, TMPRSS2, and FURIN, with lower ACE2 and FURIN expression in SCPs. OPCs are permissive to SARS-CoV-2 infection; lower infection rates exist in isogenic SCPs. The inner ear organoids show that hair cells express ACE2 and are targets for SARS-CoV-2.ConclusionsOur results provide mechanistic explanations of audiovestibular dysfunction in COVID-19 patients and introduce hiPSC-derived systems for studying infectious human otologic disease.

Highlights

  • 1234567890():,; Abstract Background COVID-19 is a pandemic respiratory and vascular disease caused by SARSCoV-2 virus

  • We provide the largest series to date of patients with documented sensorineural hearing loss (SNHL) and audiovestibular symptoms during SARS-CoV-2 infection, along with audiograms at 2–4 months after the resolution of COVID-19. To investigate whether these symptoms might be due to direct infection of audiovestibular structures, we examined the expression of SARS-CoV-2 cell entry-related genes and proteins in human and mouse inner ear tissue, and we infected human vestibular tissue to identify target cell types of SARS-CoV-2

  • To the best of our knowledge, this is the first report describing potential molecular mechanisms underlying audiovestibular dysfunction in patients with COVID-19 alongside a detailed description of audiovestibular symptoms in ten patients infected with SARS-CoV-2

Read more

Summary

Methods

HiPSCs from SK8-A line were dissociated with ReLeSR and distributed 5,000 cells per well onto low-adhesion 96-well U-bottom plates in mTeSR Plus medium containing 20 μM Y-27632 and 100 μg/ml Normocin (Invivogen, Cat# ant-nr-2). At the indicated time post infection, cells were fixed in 3.2% PFA (Electron Microscopy Sciences, Cat# 15714) in PBS for 30 min at room temperature. Inner ears were fixed in buffered 4% PFA (ThermoFisher Scientific, Cat# AAJ19943K2) for 2–3 h after piercing both the round and oval windows, decalcified in 0.12 M EDTA at room temperature for 4 days, serially dehydrated in sucrose, embedded in OCT compound, and sectioned into 12 μm cryosections on a Leica CM-1860 cryostat. Further information on research design is available in the Nature Research Reporting Summary linked to this article

Results
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.