Abstract
The DNA demethylating agent, 5-Azacytidine (5Aza), and histone deacetylase inhibitor, valproic acid (Vpa), can improve the reprogramming efficiencies of pluripotent cells. This study aimed to examine the roles of 5Aza and Vpa in the dedifferentiation of epithelial cell rests of Malassez (ERM) into stem-like cells. Additionally, the ability of stem-like cells to differentiate into mesenchymal cells was evaluated. ERM was cultured in embryonic stem cell medium (ESCM) with 1 µM of 5Aza, or 2 mM of Vpa, or a combination of 5Aza and Vpa. The cells stimulated with both 5Aza and Vpa were named as progenitor-dedifferentiated into stem-like cells (Pro-DSLCs). The Pro-DSLCs cultured in ESCM alone for another week were named as DSLCs. The stem cell markers were significantly higher in the DSLCs than the controls (no additions). The mRNA and protein levels of the endothelial, mesenchymal stem, and osteogenic cell markers were significantly higher in the Pro-DSLCs and DSLCs than the controls. The combination of a demethylating agent and a deacetylated inhibitor induced the dedifferentiation of ERM into DSLCs. The Pro-DSLCs derived from ERM can be directly reprogrammed into mesenchymal-like cells without dedifferentiation into stem-like cells. Isolated ERM treated with epigenetic agents may be used for periodontal regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.