Abstract

On the background of the two stages short process of direct reduction - electric arc furnace melting separation, the gas-solid direct reduction behaviors of South Africa titanomagnetite ore particles by carbon monoxide in fluidized bed have been investigated. The results showed that, due to the lower apparent diffusion activation energy without the gas mass transfer among particles, the CO gas reduction of titanomagnetite in fluidized bed present much higher efficiency than the pellet reduction. Continuous solid solution formed by MgO and MnO in FeO can impede reduction through the barrier effect and increase the required CO reduction potential of FeO, 2FeO·TiO2 and FeO·TiO2 in titanomagnetite. The generated FeO would combine with FeO·TiO2 to form 2FeO·TiO2 in the reduction process and lower the metallization degree after the first reduction step of iron oxides in titanomagnetite. Finally, the relationship between the metallization degree and the equilibrium CO–CO2 gas reduction potential has been analyzed and established, with the impurities effect and the phase transformation taken into consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.