Abstract

Cone-beam data acquired with a vertex path satisfying the data sufficiency condition of Tuy can be reconstructed using exact filtered backprojection algorithms. These algorithms are based on the application to each cone-beam projection of a two-dimensional (2-D) filter that is nonstationary, and therefore more complex than the one-dimensional (1-D) ramp filter used in the approximate algorithm of Feldkamp, Davis, and Kress (1984) (FDK). We determine in this paper the general conditions under which the 2-D nonstationary filter reduces to a 2-D stationary filter, and also give the explicit expression of the corresponding convolution kernel. Using this result and the redundancy of the cone-beam data, a composite algorithm is derived for the class of vertex paths that consist of one circle and some complementary subpath designed to guarantee data sufficiency. In this algorithm the projections corresponding to vertex points along the circle are filtered using a 2-D stationary filter, whereas the other projections are handled with a 2-D nonstationary filter. The composite algorithm generalizes the method proposed by Kudo and Saito (1990), in which the circle data are processed with a 1-D ramp filter as in the FDK algorithm. The advantage of the 2-D filter introduced in this paper is to guarantee that the filtered cone-beam projections do not contain singularities in smooth regions of the object. Tests of the composite algorithm on simulated data are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.