Abstract
Nonradiative losses to the open-circuit voltage are a primary factor in limiting the power-conversion efficiency of organic photovoltaic devices. The dominate nonradiative loss in the bulk is intrinsic to the active layer and can be determined from the quasi-Fermi-level splitting (QFLS) and the radiative thermodynamic limit of the photovoltage. Quantification of the QFLS in thin-film devices with low mobility is challenging due to the excitonic nature of photoexcitation and additional sources of nonradiative loss associated with the device structure. This work outlines an experimental approach based on electromodulated photoluminescence, which can be used to directly measure the intrinsic nonradiative loss to the open-circuit voltage, thereby quantifying the QFLS. Drift-diffusion simulations are carried out to show that this method accurately predicts the QFLS in the bulk of the device regardless of device-related nonradiative losses. State-of-the-art PM6:Y6-based organic solar cells are used as a model to test the experimental approach and the QFLS is quantified and shown to be independent of device architecture. This work provides a method to quantify the QFLS of organic solar cells under operational conditions, fully characterizing the different contributions to the nonradiative losses of the open-circuit voltage. The reported method will be useful not only in characterizing and understanding losses in organic solar cells but also in other device platforms such as light-emitting diodes and photodetectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.