Abstract

Conventional point spread function (PSF) measurement methods often use parametric models for the estimation of the PSF. This limits the shape of the PSF to a specific form provided by the model. However, there are unconventional imaging systems like multispectral cameras with optical bandpass filters, which produce an, e.g., unsymmetric PSF. To estimate such PSFs we have developed a new measurement method utilizing a random noise test target with markers: After acquisition of this target, a synthetic prototype of the test target is geometrically transformed to match the acquired image with respect to its geometric alignment. This allows us to estimate the PSF by direct comparison between prototype and image. The noise target allows us to evaluate all frequencies due to the approximately white spectrum of the test target - we are not limited to a specifically shaped PSF. The registration of the prototype pattern gives us the opportunity to take the specific spectrum into account and not just a white spectrum, which might be a weak assumption in small image regions. Based on the PSF measurement, we perform a deconvolution. We present comprehensive results for the PSF estimation using our multispectral camera and provide deconvolution results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.