Abstract

Partial least squares (PLSs) often require many latent variables (LVs) T to describe the variations in process variables X correlated with quality variables Y, which are obtained via the traditional nonlinear iterative PLS (NIPALS) optimal solution based on (X, Y). Total projection to latent structures (T-PLSs) performs further decomposition to extract LVs Ty directly related to Y from T, which are obtained by the PCA optimal solution based on the predicted value of Y. Inspired by T-PLS, combined with practical process characteristics, two fault detection approaches are proposed in this paper to solve problems encountered by T-PLS. Without the NIPALS, (X, Y) are projected into the latent variable space determined by main variations of Y directly. Furthermore, the structure and characteristics of several modified methods in statistical analysis are studied based on calculation procedures of solving PCA, PLS and T-PLS optimization problems, and the geometric significance of the T-PLS model is demonstrated in detail. Simulation analysis and case studies both indicate the effectiveness of the proposed approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.