Abstract

BackgroundSolid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid. This catalyst had high acid density as characterized by scanning electron microscope (SEM), energy-dispersive x-ray spectrometry (EDX) and Brunauer, Emmett, and Teller (BET) method analyses. It was further used to catalyze the esterification of oleic acid and one-step conversion of non-pretreated Jatropha oil to biodiesel. The effects of catalyst loading, reaction temperature and oil-to-methanol molar ratio, on the catalytic activity of the esterification were investigated.ResultsThe highest catalytic activity was achieved with a 96.1% esterification rate, and the catalyst can be reused three times with little deactivation under optimized conditions. Biodiesel production from Jatropha oil was studied under such conditions. It was found that 96.3% biodiesel yield from non-pretreated Jatropha oil with high-acid value (12.7 mg KOH/g) could be achieved.ConclusionsThe catalyst can be easily separated for reuse. This single-step process could be a potential route for biodiesel production from high-acid value oil by simplifying the procedure and reducing costs.

Highlights

  • Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid

  • Characterization of solid acid catalyst The surface morphology of the char was studied by scanning electron microscope (SEM) analysis

  • In this study, a solid acid catalyst produced from waste Kraft lignin via treatment by phosphoric acid, pyrolysis and sulfuric acid was shown to be useful for esterification and one-step biodiesel production from low-qualified oils due to its high acid density

Read more

Summary

Introduction

Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid This catalyst had high acid density as characterized by scanning electron microscope (SEM), energy-dispersive x-ray spectrometry (EDX) and Brunauer, Emmett, and Teller (BET) method analyses. It was further used to catalyze the esterification of oleic acid and one-step conversion of non-pretreated Jatropha oil to biodiesel. Biodiesel has gained significant attention as it is a renewable, biodegradable, less pollutant emitting, non-toxic and more environmentally friendly fuel source as compared with the fossil diesel fuel available at present. It is a renewable and biodegradable fuel that consists of fatty acid methyl esters (FAMEs). The use of solid acid catalysts has gained more and more attention in recent years

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call