Abstract

The fundamental interactions between magnetic moments at interfaces have an important impact on the properties of layered magnetic structures. Hence, a direct probing of these interactions is highly desirable for understanding a wide range of phenomena in low-dimensional solids. Here we propose a method for probing the magnetic exchange interaction at buried interfaces using spin-polarized electrons and taking advantage of the collective nature of elementary magnetic excitations (magnons). We demonstrate that, for the case of weak coupling at the interface, the low-energy magnon mode is mainly localized at the interface. Because this mode has the longest lifetime of the modes and has a finite spectral weight across the layers on top, it can be probed by electrons. A comparison of experimental data and first-principles calculations leads to the determination of the interface exchange parameters. This method may help the development of spectroscopy of buried magnetic interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.