Abstract

Spin-orbit coupling (SOC) is a fundamental physical interaction, which describes how the electrons' spin couples to their orbital motion. It is the source of a vast variety of fascinating phenomena in nanostructures. Although in most theoretical descriptions of high-temperature superconductivity SOC has been neglected, including this interaction can, in principle, revise the microscopic picture. Here by preforming energy-, momentum-, and spin-resolved spectroscopy experiments we demonstrate that while probing the dynamic charge response of the FeSe monolayer on strontium titanate, a prototype two-dimensional high-temperature superconductor using electrons, the scattering cross-section is spin dependent. We unravel the origin of the observed phenomenon and show that SOC in this two-dimensional superconductor is strong. We anticipate that such a strong SOC can have several consequences on the electronic structures and may compete with other pairing scenarios and be crucial for the mechanism of superconductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call