Abstract

AbstractA unique direct printing method is developed to additively pattern silver nanowires (AgNWs) with length of up to ≈40 µm. Uniform and well‐defined AgNW features are printed on various substrates by optimizing a series of parameters including ink composition, printing speed, nozzle size, substrate temperature, and hydrophobicity of the substrate surface. The capability of directly printing such long AgNWs is essential for stretchable electronics applications where mechanical compliance is required as manifested by a systematic study comparing the electrical and electromechanical performance of printed AgNW features with different nanowire lengths. Such printed AgNWs are used to demonstrate biaxially stretchable conductors, ultrasensitive capacitive pressure sensor arrays, and stretchable electroluminescent displays, indicating their great potential for applications in low‐cost wearable electronics. This strategy is adaptable to other material platforms like semiconducting nanowires, which may offer a cost‐effective entry to various nanowire‐based mechanically compliant sensory and optoelectronic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call