Abstract

Abstract Various morphologies including spherical micelles, nanowires and vesicles have been prepared by reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of styrene (St) in methanol using S-1-dodecyl-S -(α,α′-dimethyl-α″-acetic acid) trithiocarbonate (TC)-terminated poly(ethylene oxide) (PEO-TC) and 2,2′-azobis(isobutyronitrile) (AIBN) as chain transfer agent and initiator, respectively. GPC, 1H NMR, TEM and laser light scattering (LLS) were used to track the polymerization. The results showed that the block copolymers PEO-b-polystyrene (PEO-b-PS) were formed firstly in homogenous polymer solution, and then the spherical micelles were produced via polymerization-induced self-assembling. Continuous polymerization of the PS blocks induced the transition of spherical micelles into other morphologies. The polymerization-induced self-assembling and reorganization (PISR) were induced by chain length ratio increase of PS to PEO blocks. The concentration of St in methanol is also important factor to influence the formation of morphologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.