Abstract

This paper presents a new direct power control (DPC) strategy for a double fed induction generator (DFIG) based wind energy generation system. Switching vectors for rotor side converter were selected from the optimal switching table using the estimated stator flux position and the errors of the active and reactive power. A few number of voltage vectors may cause undesired power and stator current ripple. In this paper the increased number of voltage vectors with application of the Discrete Space Vector Modulation (DSVM) will be presented. Then a new switching table in supersynchronous and subsynchronous frames will be proposed. Simulation results of a 2 MW DFIG system demonstrate the effectiveness and robustness of the proposed control strategy during variations of active and reactive power, machine parameters, and wind speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call