Abstract

A cascaded H-bridge multilevel inverter based active power filter with a novel direct power control is proposed in this paper. It can be directly connected to medium/high voltage power line without using the bulky transformer or passive filter. Due to the limited switching frequency (typically below 1 kHz) of high-power solid-state devices (GTO/IGCT), multiple synchronous/stationary reference frame current controllers are reviewed and derived. Based on this, a novel current controller is proposed for harmonic current elimination and system power factor compensation. Furthermore, a synchronous/stationary hybrid structure can be derived with fundamental de-coupling control. The instantaneous reactive power theory and synchronous reference frame based control are compared based on mathematical models. A direct power control concept is then derived and proposed. It is equivalent as the hybrid synchronous/stationary frame current controller, but has a simpler implementation. It has clear physical meaning and can be considered as a simplified version of the hybrid frame current controller. Simulations on a 4160 V/1.2 MVA system and experimental results on a 208 V/6 kVA laboratory prototype are presented to validate the proposed active power filter design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call