Abstract

The concept of local mode (LM) states [1] in large molecules raises the possibilty of inducing chemical reactions from a well-defined initial state (bond-selective chemistry). The results of linewidth and energy measurements in gases, [2(a)] and low temperature solids, [2(b)] however, indicate that the relaxation times for such high energy (> 15000 cm^-1) states can be extremely short, < 1ps. Because of the lack of direct time-resolved measurements, the following fundamental questions have not been unequivocally answered: What are the homogeneous linewidths of LM states and what are the rates of energy relaxation or reaction out of these states? Over the past five years we have made several attempts to observe the picosecond dynamics of LM states. Due to the inherent difficulties associated with making these measurements, such as the very small oscillator strength (σ < 10^-23 cm^2), an extremely sensitive probing technique becomes imperative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call