Abstract

An iterative transform method is proposed for solving the phase problem in protein crystallography. In each iteration, a weighted average electron-density map is constructed to define an estimated protein mask. Solvent flattening is then imposed through the hybrid input-output algorithm [Fienup (1982). Appl. Opt. 21, 2758-2769]. Starting from random initial phases, after thousands of iterations the mask evolves into the correct shape and the phases converge to the correct values with an average error of 30-40° for high-resolution data for several protein crystals with high solvent content. With the use of non-crystallographic symmetry, the method could potentially be extended to phase protein crystals with less than 50% solvent fraction. The new phasing algorithm can supplement and enhance the traditional refinement tools.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.