Abstract

Direct top-down nanopatterning of semiconductors is a powerful tool for engineering properties of optoelectronic devices. Translating this approach to two-dimensional semiconductors such as monolayer transition metal dichalcogenides (TMDs) is challenging because of both the small scales required for confinement and the degradation of electronic and optical properties caused by high-energy and high-dose electron radiation used for high-resolution top-down direct electron beam patterning. We show that encapsulating a TMD monolayer with hexagonal boron nitride preserves the narrow exciton linewidths and emission intensity typical in such heterostructures after electron beam lithography, allowing direct patterning of functional optical monolayer nanostructures on scales of a few tens of nanometers. We leverage this fabrication method to study size-dependent effects on nanodot arrays of MoS2 and MoSe2 as well as laterally confined electrical transport devices, demonstrating the potential of top-down lithography for nanoscale TMD optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call