Abstract
Direct-optimization-based dictionary learning has attracted increasing attention for improving computational efficiency. However, the existing direct optimization scheme can only be applied to limited dictionary learning problems, and it remains an open problem to prove that the whole sequence obtained by the algorithm converges to a critical point of the objective function. In this article, we propose a novel direct-optimization-based dictionary learning algorithm using the minimax concave penalty (MCP) as a sparsity regularizer that can enforce strong sparsity and obtain accurate estimation. For solving the corresponding optimization problem, we first decompose the nonconvex MCP into two convex components. Then, we employ the difference of the convex functions algorithm and the nonconvex proximal-splitting algorithm to process the resulting subproblems. Thus, the direct optimization approach can be extended to a broader class of dictionary learning problems, even if the sparsity regularizer is nonconvex. In addition, the convergence guarantee for the proposed algorithm can be theoretically proven. Our numerical simulations demonstrate that the proposed algorithm has good convergence performances in different cases and robust dictionary-recovery capabilities. When applied to sparse approximations, the proposed approach can obtain sparser and less error estimation than the different sparsity regularizers in existing methods. In addition, the proposed algorithm has robustness in image denoising and key-frame extraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.