Abstract

AbstractMethods are described for transient growth analysis of flows with arbitrary geometric complexity, where in particular the flow is not required to vary slowly in the streamwise direction. Emphasis is on capturing the global effects arising from localized convective stability in streamwise‐varying flows. The methods employ the ‘timestepper's approach’ in which a nonlinear Navier–Stokes code is modified to provide evolution operators for both the forward and adjoint linearized equations. First, the underlying mathematical treatment in primitive flow variables is presented. Then, details are given for the inner level code modifications and outer level eigenvalue and SVD algorithms in the timestepper's approach. Finally, some examples are shown and guidance provided on practical aspects of this type of large‐scale stability analysis. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.