Abstract
Optical investigations of nanometer distances between proteins, their subunits, or other biomolecules have been the exclusive prerogative of Förster resonance energy transfer (FRET) microscopy for decades. In this work, we show that MINFLUX fluorescence nanoscopy measures intramolecular distances down to 1 nanometer-and in planar projections down to 1 angstrom-directly, linearly, and with angstrom precision. Our method was validated by quantifying well-characterized 1- to 10-nanometer distances in polypeptides and proteins. Moreover, we visualized the orientations of immunoglobulin subunits, applied the method in human cells, and revealed specific configurations of a histidine kinase PAS domain dimer. Our results open the door for examining proximities and interactions by direct position measurements at the intramacromolecular scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.